Polymer nanocomposite films with extremely high nanoparticle loadings via capillary rise infiltration (CaRI).
نویسندگان
چکیده
Polymer nanocomposite films (PNCFs) with extremely high concentrations of nanoparticles are important components in energy storage and conversion devices and also find use as protective coatings in various applications. PNCFs with high loadings of nanoparticles, however, are difficult to prepare because of the poor processability of polymer-nanoparticle mixtures with high concentrations of nanoparticles even at an elevated temperature. This problem is exacerbated when anisotropic nanoparticles are the desired filler materials. Here we report a straightforward method for generating PNCFs with extremely high loadings of nanoparticles. Our method is based on what we call capillary rise infiltration (CaRI) of polymer into a dense packing of nanoparticles. CaRI consists of two simple steps: (1) the preparation of a two-layer film, consisting of a porous layer of nanoparticles and a layer of polymer and (2) annealing of the bilayer structure above the temperature that imparts mobility to the polymer (e.g., glass transition of the polymer). The second step leads to polymer infiltration into the interstices of the nanoparticle layer, reminiscent of the capillary rise of simple fluid into a narrow capillary or a packing of granules. We use in situ spectroscopic ellipsometry and a three-layer Cauchy model to follow the capillary rise of polystyrene into the random network of nanoparticles. The infiltration of polystyrene into a densely packed TiO2 nanoparticle layer is shown to follow the classical Lucas-Washburn type of behaviour. We also demonstrate that PNCFs with densely packed anisotropic TiO2 nanoparticles can be readily generated by spin coating anisotropic TiO2 nanoparticles atop a polystyrene film and subsequently thermally annealing the bilayer film. We show that CaRI leads to PNCFs with modulus, hardness and scratch resistance that are far superior to the properties of films of the component materials. In addition, CaRI fills in cracks that may exist in the nanoparticle layer, leading to the healing of nanoparticle films and the formation of defect-free PNCFs. We believe this approach is widely applicable for the preparation of PNCFs with extremely high loading of nanoparticles and potentially provides a unique approach to study capillarity-induced transport of polymers under extreme confinement.
منابع مشابه
Tailoring and probing particle–polymer interactions in PMMA/silica nanocomposites†
The unique physical and mechanical properties of polymer nanocomposites have been attributed to the interfacial interactions between the organic matrix and nanoscale particles. We demonstrate the potential to tune this interaction between poly(methyl methacrylate) (PMMA) and silica nanoparticles, as a function of either nanosilica surface chemistry or polymer reactivity. Functionalized nanosili...
متن کاملPreparation and Rheological Property Evaluation of LDPE/ Zinc Oxide Nanocomposite Films for Food Packaging Application
Nowadays, nanoscale innovations in the forms of pathogen detection, active packaging, antimicrobial packaging and barrier formation are poised to elevate food packaging to new heights. Antimicrobial nanocomposite LDPE films containing ZnO nanoparticles at different concentrations (e.g. 1%, 3%, 5% and 3% nano-ZnO pulse 10% polyethylene grafted maleic anhydride (PE-g-MA), w/w pure LDPE), were p...
متن کاملPreparation and Rheological Property Evaluation of LDPE/ Zinc Oxide Nanocomposite Films for Food Packaging Application
Nowadays, nanoscale innovations in the forms of pathogen detection, active packaging, antimicrobial packaging and barrier formation are poised to elevate food packaging to new heights. Antimicrobial nanocomposite LDPE films containing ZnO nanoparticles at different concentrations (e.g. 1%, 3%, 5% and 3% nano-ZnO pulse 10% polyethylene grafted maleic anhydride (PE-g-MA), w/w pure LDPE), were p...
متن کاملMultiscale patterning of nanocomposite polyelectrolyte/nanoparticle films using inkjet printing and AFM scratching
The fabrication of structured polymer/nanoparticle composite films through a combination of additive, subtractive and self-assemblymethodologies is investigated. Consumer grade inkjet printing hardware is employed to deposit cationic polyelectrolytes on (i) hydrophilic and (ii) hydrophobised glass substrates. The hydrophobisation process controls the spreading of the droplets and hence the late...
متن کاملAn infiltration method for preparing single-wall nanotube/epoxy composites with improved thermal conductivity
Recent studies of SWNT/polymer nanocomposites identify the large interfacial thermal resistance at nanotube/nanotube junctions as a primary cause for the only modest increases in thermal conductivity relative to the polymer matrix. To reduce this interfacial thermal resistance, we prepared a freestanding nanotube framework by removing the polymer matrix from a 1 wt % SWNT/PMMA composite by nitr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 2 شماره
صفحات -
تاریخ انتشار 2015